Systems & Networking
Distributed systems, databases, networking, operating systems, and performance
Distributed systems, databases, networking, operating systems, and performance
Deploying microservice-based applications (MSAs) on heterogeneous and dynamic Cloud-Edge infrastructures requires balancing conflicting objectives, such as failure resilience, performance, and environmental sustainability. In this article, we introduce the FREEDA toolchain, designed to automate the failure-resilient and carbon-efficient deployment of MSAs over the Cloud-Edge Continuum. The FREEDA toolchain continuously adapts deployment configurations to changing operational conditions, resource availability, and sustainability constraints, aiming to maintain the MSA quality and service continuity while reducing carbon emissions. We also introduce an experimental suite using diverse simulated and emulated scenarios to validate the effectiveness of the toolchain against real-world challenges, including resource exhaustion, node failures, and carbon intensity fluctuations. The results demonstrate FREEDA's capability to autonomously reconfigure deployments by migrating services, adjusting flavour selections, or rebalancing workloads, successfully achieving an optimal balance among resilience, efficiency, and environmental impact.
The widespread deployment of 5G networks, together with the coexistence of 4G/LTE networks, provides mobile devices a diverse set of candidate cells to connect to. However, associating mobile devices to cells to maximize overall network performance, a.k.a. cell (re)selection, remains a key challenge for mobile operators. Today, cell (re)selection parameters are typically configured manually based on operator experience and rarely adapted to dynamic network conditions. In this work, we ask: Can an agent automatically learn and adapt cell (re)selection parameters to consistently improve network performance? We present a reinforcement learning (RL)-based framework called CellPilot that adaptively tunes cell (re)selection parameters by learning spatiotemporal patterns of mobile network dynamics. Our study with real-world data demonstrates that even a lightweight RL agent can outperform conventional heuristic reconfigurations by up to 167%, while generalizing effectively across different network scenarios. These results indicate that data-driven approaches can significantly improve cell (re)selection configurations and enhance mobile network performance.
Existing GPU-sharing techniques, including spatial and temporal sharing, aim to improve utilization but face challenges in simultaneously ensuring SLO adherence and maximizing efficiency due to the lack of fine-grained task scheduling on closed-source GPUs. This paper presents Hummingbird, an SLO-oriented GPU scheduling system that overcomes these challenges by enabling microsecond-scale preemption on closed-source GPUs while effectively harvesting idle GPU time slices. Comprehensive evaluations across diverse GPU architectures reveal that Hummingbird improves the SLO attainment of high-priority tasks by 9.7x and 3.5x compared to the state-of-the-art spatial and temporal-sharing approaches. When compared to executing exclusively, the SLO attainment of the high-priority task, collocating with low-priority tasks on Hummingbird, only drops by less than 1%. Meanwhile, the throughput of the low-priority task outperforms the state-of-the-art temporal-sharing approaches by 2.4x. Hummingbird demonstrates significant effectiveness in ensuring the SLO while enhancing GPU utilization.
Mixture-of-Experts (MoE) models facilitate edge deployment by decoupling model capacity from active computation, yet their large memory footprint drives the need for GPU systems with near-data processing (NDP) capabilities that offload experts to dedicated processing units. However, deploying MoE models on such edge-based GPU-NDP systems faces three critical challenges: 1) severe load imbalance across NDP units due to non-uniform expert selection and expert parallelism, 2) insufficient GPU utilization during expert computation within NDP units, and 3) extensive data pre-profiling necessitated by unpredictable expert activation patterns for pre-fetching. To address these challenges, this paper proposes an efficient inference framework featuring three key optimizations. First, the underexplored tensor parallelism in MoE inference is exploited to partition and compute large expert parameters across multiple NDP units simultaneously towards edge low-batch scenarios. Second, a load-balancing-aware scheduling algorithm distributes expert computations across NDP units and GPU to maximize resource utilization. Third, a dataset-free pre-fetching strategy proactively loads frequently accessed experts to minimize activation delays. Experimental results show that our framework enables GPU-NDP systems to achieve 2.41x on average and up to 2.56x speedup in end-to-end latency compared to state-of-the-art approaches, significantly enhancing MoE inference efficiency in resource-constrained environments.
The Time-Slotted Channel Hopping (TSCH) mode of IEEE802.15.4 standard provides ultra high end-to-end reliability and low-power consumption for application in field of Industrial Internet of Things (IIoT). With the evolving of Industrial 4.0, dynamic and bursty tasks with varied Quality of Service (QoS); effective management and utilization of growing number of mobile equipments become two major challenges for network solutions. The existing TSCH-based networks lack of a system framework design to handle these challenges. In this paper, we propose a novel, service-oriented, and hierarchical IoT network architecture named Mobile Node as a Service (Monaas). Monaas aims to systematically manage and schedule mobile nodes as on-demand, elastic resources through a new architectural design and protocol mechanisms. Its core features include a hierarchical architecture to balance global coordination with local autonomy, task-driven scheduling for proactive resource allocation, and an on-demand mobile resource integration mechanism. The feasibility and potential of the Monaas link layer mechanisms are validated through implementation and performance evaluation on an nRF52840 hardware testbed, demonstrating its potential advantages in specific scenarios. On a physical nRF52840 testbed, Monaas consistently achieved a Task Completion Rate (TCR) above 98% for high-priority tasks under bursty traffic and link degradation, whereas all representative baselines (Static TSCH, 6TiSCH Minimal, OST, FTS-SDN) remained below 40%.Moreover, its on-demand mobile resource integration activated services in 1.2 s, at least 65% faster than SDN (3.5 s) and OST/6TiSCH (> 5.8 s).
Dynamic availability is the ability of a consensus protocol to remain live despite honest participants going offline and later rejoining. A well-known limitation is that dynamically available protocols, on their own, cannot provide strong safety guarantees during network partitions or extended asynchrony. Ebb-and-flow protocols [SP21] address this by combining a dynamically available protocol with a partially synchronous finality protocol that irrevocably finalizes a prefix. We present Majorum, an ebb-and-flow construction whose dynamically available component builds on a quorum-based protocol (TOB-SVD). Under optimistic conditions, Majorum finalizes blocks in as few as three slots while requiring only a single voting phase per slot. In particular, when conditions remain favourable, each slot finalizes the next block extending the previously finalized one.
Data discovery and preparation remain persistent bottlenecks in the data management lifecycle, especially when user intent is vague, evolving, or difficult to operationalize. The Pneuma Project introduces Pneuma-Seeker, a system that helps users articulate and fulfill information needs through iterative interaction with a language model-powered platform. The system reifies the user's evolving information need as a relational data model and incrementally converges toward a usable document aligned with that intent. To achieve this, the system combines three architectural ideas: context specialization to reduce LLM burden across subtasks, a conductor-style planner to assemble dynamic execution plans, and a convergence mechanism based on shared state. The system integrates recent advances in retrieval-augmented generation (RAG), agentic frameworks, and structured data preparation to support semi-automatic, language-guided workflows. We evaluate the system through LLM-based user simulations and show that it helps surface latent intent, guide discovery, and produce fit-for-purpose documents. It also acts as an emergent documentation layer, capturing institutional knowledge and supporting organizational memory.
As Byzantine Fault Tolerant (BFT) protocols begin to be used in permissioned blockchains for user-facing applications such as payments, it is crucial that they provide low latency. In pursuit of low latency, some recently proposed BFT consensus protocols employ a leaderless optimistic fast path, in which clients broadcast their requests directly to replicas without first serializing requests at a leader, resulting in an end-to-end commit latency of 2 message delays ($2Δ$) during fault-free, synchronous periods. However, such a fast path only works if there is no contention: concurrent contending requests can cause replicas to diverge if they receive conflicting requests in different orders, triggering costly recovery procedures. In this work, we present Aspen, a leaderless BFT protocol that achieves a near-optimal latency of $2Δ+ \varepsilon$, where $\varepsilon$ indicates a short waiting delay. Aspen removes the no-contention condition by utilizing a best-effort sequencing layer based on loosely synchronized clocks and network delay estimates. Aspen requires $n = 3f + 2p + 1$ replicas to cope with up to $f$ Byzantine nodes. The $2p$ extra nodes allow Aspen's fast path to proceed even if up to $p$ replicas diverge due to unpredictable network delays. When its optimistic conditions do not hold, Aspen falls back to PBFT-style protocol, guaranteeing safety and liveness under partial synchrony. In experiments with wide-area distributed replicas, Aspen commits requests in less than 75 ms, a 1.2 to 3.3$\times$ improvement compared to previous protocols, while supporting 19,000 requests per second.
Approximate Nearest Neighbor Search (ANNS) is a fundamental operation in vector databases, enabling efficient similarity search in high-dimensional spaces. While dense ANNS has been optimized using specialized hardware accelerators, sparse ANNS remains limited by CPU-based implementations, hindering scalability. This limitation is increasingly critical as hybrid retrieval systems, combining sparse and dense embeddings, become standard in Information Retrieval (IR) pipelines. We propose SpANNS, a near-memory processing architecture for sparse ANNS. SpANNS combines a hybrid inverted index with efficient query management and runtime optimizations. The architecture is built on a CXL Type-2 near-memory platform, where a specialized controller manages query parsing and cluster filtering, while compute-enabled DIMMs perform index traversal and distance computations close to the data. It achieves 15.2x to 21.6x faster execution over the state-of-the-art CPU baselines, offering scalable and efficient solutions for sparse vector search.
As multi-agent LLM pipelines grow in complexity, existing serving paradigms fail to adapt to the dynamic serving conditions. We argue that agentic serving systems should be programmable and system-aware, unlike existing serving which statically encode the parameters. In this work, we propose a new SDN-inspired agentic serving framework that helps control the key attributes of communication based on runtime state. This architecture enables serving-efficient, responsive agent systems and paves the way for high-level intent-driven agentic serving.
Foundation models (FMs) are recognized as a transformative breakthrough that has started to reshape the future of artificial intelligence (AI) across both academia and industry. The integration of FMs into wireless networks is expected to enable the development of general-purpose AI agents capable of handling diverse network management requests and highly complex wireless-related tasks involving multi-modal data. Inspired by these ideas, this work discusses the utilization of FMs, especially multi-modal FMs in wireless networks. We focus on two important types of tasks in wireless network management: prediction tasks and control tasks. In particular, we first discuss FMs-enabled multi-modal contextual information understanding in wireless networks. Then, we explain how FMs can be applied to prediction and control tasks, respectively. Following this, we introduce the development of wireless-specific FMs from two perspectives: available datasets for development and the methodologies used. Finally, we conclude with a discussion of the challenges and future directions for FM-enhanced wireless networks.
Indoor localization systems face a fundamental trade-off between efficiency and responsiveness, which is especially important for emerging use cases such as mobile robots operating in GPS-denied environments. Traditional RTLS either require continuously powered infrastructure, limiting their scalability, or are limited by their responsiveness. This work presents Eco-WakeLoc, designed to achieve centimeter-level UWB localization while remaining energy-neutral by combining ultra-low power wake-up radios (WuRs) with solar energy harvesting. By activating anchor nodes only on demand, the proposed system eliminates constant energy consumption while achieving centimeter-level positioning accuracy. To reduce coordination overhead and improve scalability, Eco-WakeLoc employs cooperative localization where active tags initiate ranging exchanges (trilateration), while passive tags opportunistically reuse these messages for TDOA positioning. An additive-increase/multiplicative-decrease (AIMD)-based energy-aware scheduler adapts localization rates according to the harvested energy, thereby maximizing the overall performance of the sensor network while ensuring long-term energy neutrality. The measured energy consumption is only 3.22mJ per localization for active tags, 951uJ for passive tags, and 353uJ for anchors. Real-world deployment on a quadruped robot with nine anchors confirms the practical feasibility, achieving an average accuracy of 43cm in dynamic indoor environments. Year-long simulations show that tags achieve an average of 2031 localizations per day, retaining over 7% battery capacity after one year -- demonstrating that the RTLS achieves sustained energy-neutral operation. Eco-WakeLoc demonstrates that high-accuracy indoor localization can be achieved at scale without continuous infrastructure operation, combining energy neutrality, cooperative positioning, and adaptive scheduling.
Given a table T in a database and a question Q in natural language, the table question answering (TQA) task aims to return an accurate answer to Q based on the content of T. Recent state-of-the-art solutions leverage large language models (LLMs) to obtain high-quality answers. However, most rely on proprietary, large-scale LLMs with costly API access, posing a significant financial barrier. This paper instead focuses on TQA with smaller, open-weight LLMs that can run on a desktop or laptop. This setting is challenging, as such LLMs typically have weaker capabilities than large proprietary models, leading to substantial performance degradation with existing methods. We observe that a key reason for this degradation is that prior approaches often require the LLM to solve a highly sophisticated task using long, complex prompts, which exceed the capabilities of small open-weight LLMs. Motivated by this observation, we present Orchestra, a multi-agent approach that unlocks the potential of accessible LLMs for high-quality, cost-effective TQA. Orchestra coordinates a group of LLM agents, each responsible for a relatively simple task, through a structured, layered workflow to solve complex TQA problems -- akin to an orchestra. By reducing the prompt complexity faced by each agent, Orchestra significantly improves output reliability. We implement Orchestra on top of AgentScope, an open-source multi-agent framework, and evaluate it on multiple TQA benchmarks using a wide range of open-weight LLMs. Experimental results show that Orchestra achieves strong performance even with small- to medium-sized models. For example, with Qwen2.5-14B, Orchestra reaches 72.1% accuracy on WikiTQ, approaching the best prior result of 75.3% achieved with GPT-4; with larger Qwen, Llama, or DeepSeek models, Orchestra outperforms all prior methods and establishes new state-of-the-art results across all benchmarks.
This paper describes a new process and software system, the Case Count Metric System (CCMS), for systematically comparing and analyzing the outcomes of two different ER clustering processes acting on the same dataset when the true linking (labeling) is not known. The CCMS produces a set of counts that describe how the clusters produced by the first process are transformed by the second process based on four possible transformation scenarios. The transformations are that a cluster formed in the first process either remains unchanged, merges into a larger cluster, is partitioned into smaller clusters, or otherwise overlaps with multiple clusters formed in the second process. The CCMS produces a count for each of these cases, accounting for every cluster formed in the first process. In addition, when run in analysis mode, the CCMS program can assist the user in evaluating these changes by displaying the details for all changes or only for certain types of changes. The paper includes a detailed description of the CCMS process and program and examples of how the CCMS has been applied in university and industry research.
Network traffic prediction is essential for automating modern network management. It is a difficult time series forecasting (TSF) problem that has been addressed by Deep Learning (DL) models due to their ability to capture complex patterns. Advances in forecasting, from sophisticated transformer architectures to simple linear models, have improved performance across diverse prediction tasks. However, given the variability of network traffic across network environments and traffic series timescales, it is essential to identify effective deployment choices and modeling directions for network traffic prediction. This study systematically identify and evaluates twelve advanced TSF models -- including transformer-based and traditional DL approaches, each with unique advantages for network traffic prediction -- against three statistical baselines on four real traffic datasets, across multiple time scales and horizons, assessing performance, robustness to anomalies, data gaps, external factors, data efficiency, and resource efficiency in terms of time, memory, and energy. Results highlight performance regimes, efficiency thresholds, and promising architectures that balance accuracy and efficiency, demonstrating robustness to traffic challenges and suggesting new directions beyond traditional RNNs.
Oblivious load-balancing in networks involves routing traffic from sources to destinations using predetermined routes independent of the traffic, so that the maximum load on any link in the network is minimized. We investigate oblivious load-balancing schemes for a $N\times N$ torus network under sparse traffic where there are at most $k$ active source-destination pairs. We are motivated by the problem of load-balancing in large-scale LEO satellite networks, which can be modelled as a torus, where the traffic is known to be sparse and localized to certain hotspot areas. We formulate the problem as a linear program and show that no oblivious routing scheme can achieve a worst-case load lower than approximately $\frac{\sqrt{2k}}{4}$ when $1<k \leq N^2/2$ and $\frac{N}{4}$ when $N^2/2\leq k\leq N^2$. Moreover, we demonstrate that the celebrated Valiant Load Balancing scheme is suboptimal under sparse traffic and construct an optimal oblivious load-balancing scheme that achieves the lower bound. Further, we discover a $\sqrt{2}$ multiplicative gap between the worst-case load of a non-oblivious routing and the worst-case load of any oblivious routing. The results can also be extended to general $N\times M$ tori with unequal link capacities along the vertical and horizontal directions.
Training large language models requires distributing computation across many accelerators, yet practitioners select parallelism strategies (data, tensor, pipeline, ZeRO) through trial and error because no unified systematic framework predicts their behavior. We introduce placement semantics: each strategy is specified by how it places four training states (parameters, optimizer, gradients, activations) across devices using five modes (replicated, sharded, sharded-with-gather, materialized, offloaded). From placement alone, without implementation details, we derive memory consumption and communication volume. Our predictions match published results exactly: ZeRO-3 uses 8x less memory than data parallelism at 1.5x communication cost, as reported in the original paper. We prove two conditions (gradient integrity, state consistency) are necessary and sufficient for distributed training to match single-device results, and provide composition rules for combining strategies safely. The framework unifies ZeRO Stages 1-3, Fully Sharded Data Parallel (FSDP), tensor parallelism, and pipeline parallelism as instances with different placement choices.
Real-time recommender systems execute multi-stage cascades (retrieval, pre-processing, fine-grained ranking) under strict tail-latency SLOs, leaving only tens of milliseconds for ranking. Generative recommendation (GR) models can improve quality by consuming long user-behavior sequences, but in production their online sequence length is tightly capped by the ranking-stage P99 budget. We observe that the majority of GR tokens encode user behaviors that are independent of the item candidates, suggesting an opportunity to pre-infer a user-behavior prefix once and reuse it during ranking rather than recomputing it on the critical path. Realizing this idea at industrial scale is non-trivial: the prefix cache must survive across multiple pipeline stages before the final ranking instance is determined, the user population implies cache footprints far beyond a single device, and indiscriminate pre-inference would overload shared resources under high QPS. We present RelayGR, a production system that enables in-HBM relay-race inference for GR. RelayGR selectively pre-infers long-term user prefixes, keeps their KV caches resident in HBM over the request lifecycle, and ensures the subsequent ranking can consume them without remote fetches. RelayGR combines three techniques: 1) a sequence-aware trigger that admits only at-risk requests under a bounded cache footprint and pre-inference load, 2) an affinity-aware router that co-locates cache production and consumption by routing both the auxiliary pre-infer signal and the ranking request to the same instance, and 3) a memory-aware expander that uses server-local DRAM to capture short-term cross-request reuse while avoiding redundant reloads. We implement RelayGR on Huawei Ascend NPUs and evaluate it with real queries. Under a fixed P99 SLO, RelayGR supports up to 1.5$\times$ longer sequences and improves SLO-compliant throughput by up to 3.6$\times$.
Mixture-of-Experts (MoE) models are increasingly used to serve LLMs at scale, but failures become common as deployment scale grows. Existing systems exhibit poor failure resilience: even a single worker failure triggers a coarse-grained, service-wide restart, discarding accumulated progress and halting the entire inference pipeline during recovery--an approach clearly ill-suited for latency-sensitive, LLM services. We present Tarragon, a resilient MoE inference framework that confines the failures impact to individual workers while allowing the rest of the pipeline to continue making forward progress. Tarragon exploits the natural separation between the attention and expert computation in MoE-based transformers, treating attention workers (AWs) and expert workers (EWs) as distinct failure domains. Tarragon introduces a reconfigurable datapath to mask failures by rerouting requests to healthy workers. On top of this datapath, Tarragon implements a self-healing mechanism that relaxes the tightly synchronized execution of existing MoE frameworks. For stateful AWs, Tarragon performs asynchronous, incremental KV cache checkpointing with per-request restoration, and for stateless EWs, it leverages residual GPU memory to deploy shadow experts. These together keep recovery cost and recomputation overhead extremely low. Our evaluation shows that, compared to state-of-the-art MegaScale-Infer, Tarragon reduces failure-induced stalls by 160-213x (from ~64 s down to 0.3-0.4 s) while preserving performance when no failures occur.
Embedding-based dense retrieval has become the cornerstone of many critical applications, where approximate nearest neighbor search (ANNS) queries are often combined with filters on labels such as dates and price ranges. Graph-based indexes achieve state-of-the-art performance on unfiltered ANNS but encounter connectivity breakdown on low-selectivity filtered queries, where qualifying vectors become sparse and the graph structure among them fragments. Recent research proposes specialized graph indexes that address this issue by expanding graph degree, which incurs prohibitively high construction costs. Given these inherent limitations of graph-based methods, we argue for a dual-index architecture and present Curator, a partition-based index that complements existing graph-based approaches for low-selectivity filtered ANNS. Curator builds specialized indexes for different labels within a shared clustering tree, where each index adapts to the distribution of its qualifying vectors to ensure efficient search while sharing structure to minimize memory overhead. The system also supports incremental updates and handles arbitrary complex predicates beyond single-label filters by efficiently constructing temporary indexes on the fly. Our evaluation demonstrates that integrating Curator with state-of-the-art graph indexes reduces low-selectivity query latency by up to 20.9x compared to pre-filtering fallback, while increasing construction time and memory footprint by only 5.5% and 4.3%, respectively.