We show that particle production in proton-nucleus (pA) collisions in the Color Glass Condensate model can be related to Deep Inelastic Scattering of leptons on protons/nuclei (DIS). The common building block is the quark antiquark (or gluon-gluon) dipole cross section which is present in both DIS and pA processes. This correspondence in a sense generalizes the standard leading twist approach to pA collisions based on collinear factorization and perturbative QCD, and allows one to express the pA cross sections in terms of a universal quantity (dipole cross section) which, in principle, can be measured in DIS or other processes. Therefore, using the parameterization of dipole cross section at HERA, one can calculate particle production cross sections in proton-nucleus collisions at high energies. Alternatively, one could use proton-nucleus experiments to further constrain models of the dipole cross-section. We show that the McLerran-Venugopalan model predicts enhancement of cross sections at large p_t (Cronin effect) and suppression of cross sections at low p_t. The cross over depends on rapidity and moves to higher p_t as one goes to more forward rapidities.