Due to the restricted resources, efficient scheduling in vertiports has received much more attention in the field of Urban Air Mobility (UAM). For the scheduling problem, we utilize a Mixed Integer Linear Programming (MILP), which is often formulated in a resource-restricted project scheduling problem (RCPSP). In this paper, we show our approach to handle both dynamic operation requirements and vague rescheduling requests from humans. Particularly, we utilize a three-valued logic for interpreting ambiguous user intents and a decision tree, proposing a newly integrated system that combines Answer Set Programming (ASP) and MILP. This integrated framework optimizes schedules and supports human inputs transparently. With this system, we provide a robust structure for explainable, adaptive UAM scheduling.