Random matrix theory has played an important role in various areas of pure mathematics, mathematical physics, and machine learning. From a practical perspective of data science, input data are usually normalized prior to processing. Thus, this study investigates the statistical properties of min-max normalized eigenvalues in random matrices. Previously, the effective distribution for such normalized eigenvalues has been proposed. In this study, we apply it to evaluate a scaling law of the cumulative distribution. Furthermore, we derive the residual error that arises during matrix factorization of random matrices. We conducted numerical experiments to verify these theoretical predictions.