The transition of Large Language Models (LLMs) from stochastic chat interfaces to reliable software components necessitates a fundamental re-engineering of interaction paradigms. Current methodologies, predominantly heuristic-based "prompt engineering," fail to provide the deterministic guarantees required for mission-critical applications. We introduce the Meta-Prompting Protocol, a rigorous theoretical framework that formalizes the orchestration of LLMs as a programmable, self-optimizing system. Central to this protocol is the Adversarial Trinity, a tripartite topology comprising a Generator (P), an Auditor (A), and an Optimizer (O). By treating natural language instructions as differentiable variables within a semantic computation graph and utilizing textual critiques as gradients, this architecture mitigates hallucination and prevents model collapse. We demonstrate the theoretical viability of this approach using declarative programming paradigms (DSPy) and automatic textual differentiation (TextGrad), establishing a foundation for "Observable Software Engineering" in the era of probabilistic computing.