Table of Contents
Fetching ...
Paper

SGEMAS: A Self-Growing Ephemeral Multi-Agent System for Unsupervised Online Anomaly Detection via Entropic Homeostasis

Abstract

Current deep learning approaches for physiological signal monitoring suffer from static topologies and constant energy consumption. We introduce SGEMAS (Self-Growing Ephemeral Multi-Agent System), a bio-inspired architecture that treats intelligence as a dynamic thermodynamic process. By coupling a structural plasticity mechanism (agent birth death) to a variational free energy objective, the system naturally evolves to minimize prediction error with extreme sparsity. An ablation study on the MIT-BIH Arrhythmia Database reveals that adding a multi-scale instability index to the agent dynamics significantly improves performance. In a challenging inter-patient, zero-shot setting, the final SGEMAS v3.3 model achieves a mean AUC of 0.570 +- 0.070, outperforming both its simpler variants and a standard autoencoder baseline. This result validates that a physics-based, energy-constrained model can achieve robust unsupervised anomaly detection, offering a promising direction for efficient biomedical AI.