Multimode Jahn-Teller Effect in Negatively Charged Nitrogen-Vacancy Center in Diamond
Authors
Jianhua Zhang, Jun Liu, Z. Z. Zhu, K. M. Ho, V. V. Dobrovitski, C. Z. Wang
Abstract
Multimode Jahn-Teller (JT) effect in a negatively charged nitrogen-vacancy (NV) center in its excited state is studied by first-principles calculations based on density function theory (DFT). The activation pathways of the JT distortions are analyzed to elucidate and quantify the contribution of different vibrational modes. The results show that the dominant vibrational modes in the JT distortions are closely related to the phonon sideband observed in two-dimensional electronic spectroscopy (2DES), consistent with ab initio molecular dynamics (AIMD) simulation results. Our calculations provide a new way to understand the origin and the mechanism of the vibronic coupling of the system. The obtained dominant vibrational modes coupled to the NV centre and their interactions with electronic states provides new insights into dephasing, relaxation and optically driven quantum effects, and are critical for the application to quantum information, magnetometry and sensing.