Table of Contents
Fetching ...
Paper

Dipolar quantum gases: from 3D to Low dimensions

Abstract

Dipolar quantum gases, encompassing atoms and molecules with significant dipole moments, exhibit unique long-range and anisotropic dipole-dipole interactions (DDI), distinguishing them from systems dominated by short-range contact interactions. This review explores their behavior across dimensions, focusing on magnetic atoms in quasi-2D in comparison to 3D. In 3D, strong DDI leads to phenomena like anisotropic superfluidity, quantum droplets stabilized by Lee-Huang-Yang corrections, and supersolid states with density modulations. In 2D, we discuss a new scenario where DDI induces angle-dependent Berezinskii-Kosterlitz-Thouless transitions and potential supersolidity, as suggested by recent experimental realizations of strongly dipolar systems in quasi-2D geometries. We identify key challenges for future experimental and theoretical work on strongly dipolar 2D systems. The review concludes by highlighting how these unique 2D dipolar systems could advance fundamental research as well as simulate novel physical phenomena.