Table of Contents
Fetching ...
Paper

MURIM: Multidimensional Reputation-based Incentive Mechanism for Federated Learning

Abstract

Federated Learning (FL) has emerged as a leading privacy-preserving machine learning paradigm, enabling participants to share model updates instead of raw data. However, FL continues to face key challenges, including weak client incentives, privacy risks, and resource constraints. Assessing client reliability is essential for fair incentive allocation and ensuring that each client's data contributes meaningfully to the global model. To this end, we propose MURIM, a MUlti-dimensional Reputation-based Incentive Mechanism that jointly considers client reliability, privacy, resource capacity, and fairness while preventing malicious or unreliable clients from earning undeserved rewards. MURIM allocates incentives based on client contribution, latency, and reputation, supported by a reliability verification module. Extensive experiments on MNIST, FMNIST, and ADULT Income datasets demonstrate that MURIM achieves up to 18% improvement in fairness metrics, reduces privacy attack success rates by 5-9%, and improves robustness against poisoning and noisy-gradient attacks by up to 85% compared to state-of-the-art baselines. Overall, MURIM effectively mitigates adversarial threats, promotes fair and truthful participation, and preserves stable model convergence across heterogeneous and dynamic federated settings.