Exploring Machine Learning, Deep Learning, and Explainable AI Methods for Seasonal Precipitation Prediction in South America
Authors
Matheus Corrêa Domingos, Valdivino Alexandre de Santiago Júnior, Juliana Aparecida Anochi, Elcio Hideiti Shiguemori, Luísa Mirelle Costa dos Santos, Hércules Carlos dos Santos Pereira, André Estevam Costa Oliveira
Abstract
Forecasting meteorological variables is challenging due to the complexity of their processes, requiring advanced models for accuracy. Accurate precipitation forecasts are vital for society. Reliable predictions help communities mitigate climatic impacts. Based on the current relevance of artificial intelligence (AI), classical machine learning (ML) and deep learning (DL) techniques have been used as an alternative or complement to dynamic modeling. However, there is still a lack of broad investigations into the feasibility of purely data-driven approaches for precipitation forecasting. This study aims at addressing this issue where different classical ML and DL approaches for forecasting precipitation in South America, taking into account all 2019 seasons, are considered in a detailed investigation. The selected classical ML techniques were Random Forests and extreme gradient boosting (XGBoost), while the DL counterparts were a 1D convolutional neural network (CNN 1D), a long short-term memory (LSTM) model, and a gated recurrent unit (GRU) model. Additionally, the Brazilian Global Atmospheric Model (BAM) was used as a representative of the traditional dynamic modeling approach. We also relied on explainable artificial intelligence (XAI) to provide some explanations for the models behaviors. LSTM showed strong predictive performance while BAM, the traditional dynamic model representative, had the worst results. Despite presented the higher latency, LSTM was most accurate for heavy precipitation. If cost is a concern, XGBoost offers lower latency with slightly accuracy loss. The results of this research confirm the viability of DL models for climate forecasting, solidifying a global trend in major meteorological and climate forecasting centers.