Assessing High-Risk Systems: An EU AI Act Verification Framework
Authors
Alessio Buscemi, Tom Deckenbrunnen, Fahria Kabir, Nishat Mowla, Kateryna Mishchenko
Abstract
A central challenge in implementing the AI Act and other AI-relevant regulations in the EU is the lack of a systematic approach to verify their legal mandates. Recent surveys show that this regulatory ambiguity is perceived as a significant burden, leading to inconsistent readiness across Member States. This paper proposes a comprehensive framework designed to help close this gap by organising compliance verification along two fundamental dimensions: the type of method (controls vs. testing) and the target of assessment (data, model, processes, and final product). Additionally, our framework maps core legal requirements to concrete verification activities, serving as a vital bridge between policymakers and practitioners, and aligning legal text with technical standards and best practices. The proposed approach aims to reduce interpretive uncertainty, promote consistency in assessment practices, and support the alignment of regulatory, ethical, and technical perspectives across the AI lifecycle.