Taero Kim, Hoyoon Byun, Youngjun Choi, Sungrae Park, Kyungwoo Song
Abstract
Scaling large language models (LLMs) demands approaches that increase capacity without incurring excessive parameter growth or inference cost. Depth Up-Scaling (DUS) has emerged as a promising strategy by duplicating layers and applying Continual Pre-training (CPT), but its reliance on feed-forward networks (FFNs) limits efficiency and attainable gains. We introduce Memory-Infused Depth Up-Scaling (MIDUS), which replaces FFNs in duplicated blocks with a head-wise memory (HML) layer. Motivated by observations that attention heads have distinct roles both across and within layers, MIDUS assigns an independent memory bank to each head, enabling head-wise retrieval and injecting information into subsequent layers while preserving head-wise functional structure. This design combines sparse memory access with head-wise representations and incorporates an efficient per-head value factorization module, thereby relaxing the usual efficiency-performance trade-off. Across our CPT experiments, MIDUS exhibits robust performance improvements over strong DUS baselines while maintaining a highly efficient parameter footprint. Our findings establish MIDUS as a compelling and resource-efficient alternative to conventional FFN replication for depth up-scaling by leveraging its head-wise memory design.