Table of Contents
Fetching ...
Paper

Human-AI Collaboration Mechanism Study on AIGC Assisted Image Production for Special Coverage

Abstract

Artificial Intelligence Generated Content (AIGC) assisting image production triggers controversy in journalism while attracting attention from media agencies. Key issues involve misinformation, authenticity, semantic fidelity, and interpretability. Most AIGC tools are opaque "black boxes," hindering the dual demands of content accuracy and semantic alignment and creating ethical, sociotechnical, and trust dilemmas. This paper explores pathways for controllable image production in journalism's special coverage and conducts two experiments with projects from China's media agency: (1) Experiment 1 tests cross-platform adaptability via standardized prompts across three scenes, revealing disparities in semantic alignment, cultural specificity, and visual realism driven by training-corpus bias and platform-level filtering. (2) Experiment 2 builds a human-in-the-loop modular pipeline combining high-precision segmentation (SAM, GroundingDINO), semantic alignment (BrushNet), and style regulating (Style-LoRA, Prompt-to-Prompt), ensuring editorial fidelity through CLIP-based semantic scoring, NSFW/OCR/YOLO filtering, and verifiable content credentials. Traceable deployment preserves semantic representation. Consequently, we propose a human-AI collaboration mechanism for AIGC assisted image production in special coverage and recommend evaluating Character Identity Stability (CIS), Cultural Expression Accuracy (CEA), and User-Public Appropriateness (U-PA).