Strategic Server Deployment under Uncertainty in Mobile Edge Computing
Authors
Duc A. Tran, Dung Truong, Duy Le
Abstract
Server deployment is a fundamental task in mobile edge computing: where to place the edge servers and what user cells to assign to them. To make this decision is context-specific, but common goals are 1) computing efficiency: maximize the amount of workload processed by the edge, and 2) communication efficiency: minimize the communication cost between the cells and their assigned servers. We focus on practical scenarios where the user workload in each cell is unknown and time-varying, and so are the effective capacities of the servers. Our research problem is to choose a subset of candidate servers and assign them to the user cells such that the above goals are sustainably achieved under the above uncertainties. We formulate this problem as a stochastic bilevel optimization, which is strongly NP-hard and unseen in the literature. By approximating the objective function with submodular functions, we can utilize state-of-the-art greedy algorithms for submodular maximization to effectively solve our problem. We evaluate the proposed algorithm using real-world data, showing its superiority to alternative methods; the improvement can be as high as 55%