Table of Contents
Fetching ...
Paper

Readdressing the contribution of photonuclear reactions to the muon content of extensive air showers: a heuristic approach

Abstract

The indirect ground-based observations of cosmic rays through extensive air showers in modern experiments typically involve the use of Monte Carlo simulations to determine the characteristics of the primary particles. These simulations necessitate assumptions about particle interactions at energies that have not yet been experimentally probed, which introduces systematic uncertainties in key observables, particularly the number of muons. Current research on this uncertainty primarily focuses on hadronic interaction models, the dominant source of muon production. This study presents an approach that takes into account another significant mechanism for muon generation: photonuclear reactions. A robust heuristic technique has been developed to estimate the contribution of these interactions to the total number of muons over a wide range of extensive air shower parameters (including primary particle type, energy, and slant atmospheric depth) and photonuclear interaction models, with an absolute percentage error on the order of in the estimated number of muons. Furthermore, several potential applications of the suggested method in relation to modern challenges in extensive air shower physics are discussed.