Quantum-Aware Generative AI for Materials Discovery: A Framework for Robust Exploration Beyond DFT Biases
Authors
Mahule Roy, Guillaume Lambard
Abstract
Conventional generative models for materials discovery are predominantly trained and validated using data from Density Functional Theory (DFT) with approximate exchange-correlation functionals. This creates a fundamental bottleneck: these models inherit DFT's systematic failures for strongly correlated systems, leading to exploration biases and an inability to discover materials where DFT predictions are qualitatively incorrect. We introduce a quantum-aware generative AI framework that systematically addresses this limitation through tight integration of multi-fidelity learning and active validation. Our approach employs a diffusion-based generator conditioned on quantum-mechanical descriptors and a validator using an equivariant neural network potential trained on a hierarchical dataset spanning multiple levels of theory (PBE, SCAN, HSE06, CCSD(T)). Crucially, we implement a robust active learning loop that quantifies and targets the divergence between low- and high-fidelity predictions. We conduct comprehensive ablation studies to deconstruct the contribution of each component, perform detailed failure mode analysis, and benchmark our framework against state-of-the-art generative models (CDVAE, GNoME, DiffCSP) across several challenging material classes. Our results demonstrate significant practical gains: a 3-5x improvement in successfully identifying potentially stable candidates in high-divergence regions (e.g., correlated oxides) compared to DFT-only baselines, while maintaining computational feasibility. This work provides a rigorous, transparent framework for extending the effective search space of computational materials discovery beyond the limitations of single-fidelity models.