Table of Contents
Fetching ...
Paper

Optimized Learned Count-Min Sketch

Abstract

Count-Min Sketch (CMS) is a memory-efficient data structure for estimating the frequency of elements in a multiset. Learned Count-Min Sketch (LCMS) enhances CMS with a machine learning model to reduce estimation error under the same memory usage, but suffers from slow construction due to empirical parameter tuning and lacks theoretical guarantees on intolerable error probability. We propose Optimized Learned Count-Min Sketch (OptLCMS), which partitions the input domain and assigns each partition to its own CMS instance, with CMS parameters analytically derived for fixed thresholds, and thresholds optimized via dynamic programming with approximate feasibility checks. This reduces the need for empirical validation, enabling faster construction while providing theoretical guarantees under these assumptions. OptLCMS also allows explicit control of the allowable error threshold, improving flexibility in practice. Experiments show that OptLCMS builds faster, achieves lower intolerable error probability, and matches the estimation accuracy of LCMS.