Table of Contents
Fetching ...
Paper

CLARGA: Multimodal Graph Representation Learning over Arbitrary Sets of Modalities

Abstract

We introduce CLARGA, a general-purpose multimodal fusion architecture for multimodal representation learning that works with any number and type of modalities without changing the underlying framework. Given a supervised dataset, CLARGA can be applied to virtually any machine learning task to fuse different multimodal representations for processing by downstream layers. On a sample-by-sample basis, CLARGA learns how modalities should inform one another by building an attention weighted graph over their features and passing messages along this graph with a multi-head Graph Attention Network. Not only does this make CLARGA highly adaptive, as it constructs unique graphs for different samples, it makes for efficient fusion with sub-quadratic complexity as the number of modalities grows. Through a learnable mask, it can also adapt to missing modality inputs. The model is trained with a hybrid objective that combines a supervised task loss with contrastive InfoNCE loss, improving cross-modal consistency and robustness to noisy inputs. We demonstrate CLARGA's effectiveness in diverse multimodal representation learning tasks across 7 datasets spanning finance, human-computer interaction, general multimedia classification, and affective computing. It consistently outperforms baselines, state-of-the-art models, and ablations. Additional experiments also demonstrate its robustness to missing inputs and ability to excel on niche tasks. Overall, CLARGA can be easily plugged into machine learning models for effective and efficient learning of representations across a wide variety of tasks.