mmWEAVER: Environment-Specific mmWave Signal Synthesis from a Photo and Activity Description
Authors
Mahathir Monjur, Shahriar Nirjon
Abstract
Realistic signal generation and dataset augmentation are essential for advancing mmWave radar applications such as activity recognition and pose estimation, which rely heavily on diverse, and environment-specific signal datasets. However, mmWave signals are inherently complex, sparse, and high-dimensional, making physical simulation computationally expensive. This paper presents mmWeaver, a novel framework that synthesizes realistic, environment-specific complex mmWave signals by modeling them as continuous functions using Implicit Neural Representations (INRs), achieving up to 49-fold compression. mmWeaver incorporates hypernetworks that dynamically generate INR parameters based on environmental context (extracted from RGB-D images) and human motion features (derived from text-to-pose generation via MotionGPT), enabling efficient and adaptive signal synthesis. By conditioning on these semantic and geometric priors, mmWeaver generates diverse I/Q signals at multiple resolutions, preserving phase information critical for downstream tasks such as point cloud estimation and activity classification. Extensive experiments show that mmWeaver achieves a complex SSIM of 0.88 and a PSNR of 35 dB, outperforming existing methods in signal realism while improving activity recognition accuracy by up to 7% and reducing human pose estimation error by up to 15%, all while operating 6-35 times faster than simulation-based approaches.