Explainable AI for Smart Greenhouse Control: Interpretability of Temporal Fusion Transformer in the Internet of Robotic Things
Authors
Muhammad Jawad Bashir, Shagufta Henna, Eoghan Furey
Abstract
The integration of the Internet of Robotic Things (IoRT) in smart greenhouses has revolutionised precision agriculture by enabling efficient and autonomous environmental control. However, existing time series forecasting models in such setups often operate as black boxes, lacking mechanisms for explainable decision-making, which is a critical limitation when trust, transparency, and regulatory compliance are paramount in smart farming practices. This study leverages the Temporal Fusion Transformer (TFT) model to automate actuator settings for optimal greenhouse management. To enhance interpretability and trust in the model decision-making process, both local and global explanation techniques were employed using model-inherent interpretation, local interpretable model-agnostic explanations (LIME), and SHapley additive explanations (SHAP). These explainability methods provide information on how different sensor readings, such as temperature, humidity, CO2 levels, light, and outer climate, contribute to actuator control decisions in an automated greenhouse. The trained TFT model achieved a test accuracy of 95% on a class-imbalanced dataset for actuator control settings in an automated greenhouse environment. The results demonstrate the varying influence of each sensor on real-time greenhouse adjustments, ensuring transparency and enabling adaptive fine-tuning for improved crop yield and resource efficiency.