Table of Contents
Fetching ...
Paper

Enhancing Geo-localization for Crowdsourced Flood Imagery via LLM-Guided Attention

Abstract

Crowdsourced street-view imagery from social media provides real-time visual evidence of urban flooding and other crisis events, yet it often lacks reliable geographic metadata for emergency response. Existing image geo-localization approaches, also known as Visual Place Recognition (VPR) models, exhibit substantial performance degradation when applied to such imagery due to visual distortions and domain shifts in cross-source scenarios. This paper presents VPR-AttLLM, a model-agnostic framework that integrates the semantic reasoning and geo-knowledge of Large Language Models (LLMs) into established VPR pipelines through attention-guided descriptor enhancement. By leveraging LLMs to identify location-informative regions within the city context and suppress visual noise, VPR-AttLLM improves retrieval performance without requiring model retraining or additional data. Comprehensive evaluations are conducted on extended benchmarks including SF-XL enriched with real social-media flood images, synthetic flooding scenarios over established query sets and Mapillary photos, and a new HK-URBAN dataset capturing morphologically distinct cityscapes. Integrating VPR-AttLLM with three state-of-the-art VPR models-CosPlace, EigenPlaces, and SALAD-consistently improves recall performance, yielding relative gains typically between 1-3% and reaching up to 8% on the most challenging real flood imagery. Beyond measurable gains in retrieval accuracy, this study establishes a generalizable paradigm for LLM-guided multimodal fusion in visual retrieval systems. By embedding principles from urban perception theory into attention mechanisms, VPR-AttLLM bridges human-like spatial reasoning with modern VPR architectures. Its plug-and-play design, strong cross-source robustness, and interpretability highlight its potential for scalable urban monitoring and rapid geo-localization of crowdsourced crisis imagery.