Table of Contents
Fetching ...
Paper

Cosmic Acceleration from Quantum Gravity: Emergent Inflation and Dynamical Dark Energy

Abstract

We present a mechanism for the emergence of cosmic acceleration within the mean-field approximation of Group Field Theory models of quantum gravity. Depending on the interaction type, the resulting cosmological dynamics can either feature a late-time attractor corresponding to a dynamical dark energy phase, often with characteristic phantom behavior, including in models inspired by simplicial gravity, or instead support an early slow-roll inflationary epoch driven by the same underlying quantum-gravitational effects. This emergent inflation, effectively captured by a single-field description, can sustain the required expansion, naturally avoids the graceful exit problem, and appears to transition into a persistent, non-accelerating phase consistent with classical expectations.