Table of Contents
Fetching ...
Paper

A Fast Interpretable Fuzzy Tree Learner

Abstract

Fuzzy rule-based systems have been mostly used in interpretable decision-making because of their interpretable linguistic rules. However, interpretability requires both sensible linguistic partitions and small rule-base sizes, which are not guaranteed by many existing fuzzy rule-mining algorithms. Evolutionary approaches can produce high-quality models but suffer from prohibitive computational costs, while neural-based methods like ANFIS have problems retaining linguistic interpretations. In this work, we propose an adaptation of classical tree-based splitting algorithms from crisp rules to fuzzy trees, combining the computational efficiency of greedy algoritms with the interpretability advantages of fuzzy logic. This approach achieves interpretable linguistic partitions and substantially improves running time compared to evolutionary-based approaches while maintaining competitive predictive performance. Our experiments on tabular classification benchmarks proof that our method achieves comparable accuracy to state-of-the-art fuzzy classifiers with significantly lower computational cost and produces more interpretable rule bases with constrained complexity. Code is available in: https://github.com/Fuminides/fuzzy_greedy_tree_public