Table of Contents
Fetching ...
Paper

Correlation and Entanglement partners in Gaussian systems

Abstract

We introduce a framework to identify where the total correlations and entanglement with a chosen degree of freedom reside within the rest of a system, in the context of bosonic many-body Gaussian quantum systems. Our results are organized into two main propositions. First, for pure Gaussian states, we show that every correlated mode possesses a unique single-degree-of-freedom partner that fully captures its correlations (consisting of entanglement), and we provide an explicit construction of this partner from the complex structure of the system's state. Second, for mixed Gaussian states, we constructively demonstrate that the notion of a partner subsystem splits into two: a correlation partner, which contains all classical and quantum correlations and need not correspond to a single degree of freedom, and an entanglement partner, which is always at most single-mode. Finally, we extend the construction of partners to multi-mode subsystems. Together, these results provide conceptual practical tools to study how bipartite correlations and entanglement are structured and where they can be found in complex Gaussian many-body systems.