Semantic-Aware Confidence Calibration for Automated Audio Captioning
Authors
Lucas Dunker, Sai Akshay Menta, Snigdha Mohana Addepalli, Venkata Krishna Rayalu Garapati
Abstract
Automated audio captioning models frequently produce overconfident predictions regardless of semantic accuracy, limiting their reliability in deployment. This deficiency stems from two factors: evaluation metrics based on n-gram overlap that fail to capture semantic correctness, and the absence of calibrated confidence estimation. We present a framework that addresses both limitations by integrating confidence prediction into audio captioning and redefining correctness through semantic similarity. Our approach augments a Whisper-based audio captioning model with a learned confidence prediction head that estimates uncertainty from decoder hidden states. We employ CLAP audio-text embeddings and sentence transformer similarities (FENSE) to define semantic correctness, enabling Expected Calibration Error (ECE) computation that reflects true caption quality rather than surface-level text overlap. Experiments on Clotho v2 demonstrate that confidence-guided beam search with semantic evaluation achieves dramatically improved calibration (CLAP-based ECE of 0.071) compared to greedy decoding baselines (ECE of 0.488), while simultaneously improving caption quality across standard metrics. Our results establish that semantic similarity provides a more meaningful foundation for confidence calibration in audio captioning than traditional n-gram metrics.