Table of Contents
Fetching ...
Paper

ELANA: A Simple Energy and Latency Analyzer for LLMs

Abstract

The latency and power consumption of large language models (LLMs) are major constraints when serving them across a wide spectrum of hardware platforms, from mobile edge devices to cloud GPU clusters. Benchmarking is crucial for optimizing efficiency in both model deployment and next-generation model development. To address this need, we open-source a simple profiling tool, \textbf{ELANA}, for evaluating LLMs. ELANA is designed as a lightweight, academic-friendly profiler for analyzing model size, key-value (KV) cache size, prefilling latency (Time-to-first-token, TTFT), generation latency (Time-per-output-token, TPOT), and end-to-end latency (Time-to-last-token, TTLT) of LLMs on both multi-GPU and edge GPU platforms. It supports all publicly available models on Hugging Face and offers a simple command-line interface, along with optional energy consumption logging. Moreover, ELANA is fully compatible with popular Hugging Face APIs and can be easily customized or adapted to compressed or low bit-width models, making it ideal for research on efficient LLMs or for small-scale proof-of-concept studies. We release the ELANA profiling tool at: https://github.com/enyac-group/Elana.