QSTAformer: A Quantum-Enhanced Transformer for Robust Short-Term Voltage Stability Assessment against Adversarial Attacks
Authors
Yang Li, Chong Ma, Yuanzheng Li, Sen Li, Yanbo Chen, Zhaoyang Dong
Abstract
Short-term voltage stability assessment (STVSA) is critical for secure power system operation. While classical machine learning-based methods have demonstrated strong performance, they still face challenges in robustness under adversarial conditions. This paper proposes QSTAformer-a tailored quantum-enhanced Transformer architecture that embeds parameterized quantum circuits (PQCs) into attention mechanisms-for robust and efficient STVSA. A dedicated adversarial training strategy is developed to defend against both white-box and gray-box attacks. Furthermore, diverse PQC architectures are benchmarked to explore trade-offs between expressiveness, convergence, and efficiency. To the best of our knowledge, this is the first work to systematically investigate the adversarial vulnerability of quantum machine learning-based STVSA. Case studies on the IEEE 39-bus system demonstrate that QSTAformer achieves competitive accuracy, reduced complexity, and stronger robustness, underscoring its potential for secure and scalable STVSA under adversarial conditions.