Table of Contents
Fetching ...
Paper

Less Is More for Multi-Step Logical Reasoning of LLM Generalisation Under Rule Removal, Paraphrasing, and Compression

Abstract

Large language models (LLMs) achieve strong performance on many natural language tasks, yet their generalisation under structured perturbations of logical rule systems remains insufficiently characterised. We present a controlled evaluation framework that probes reasoning reliability through four stress tests: (1) rule deletion, removing redundant versus essential rules from a multi-step inference chain; (2) contradictory evidence injection; (3) logic-preserving rewrites based on equivalence laws (contraposition, double negation, implication-to-disjunction, De Morgan, identity, and commutativity); and (4) multi-law equivalence stacking that composes 2--5 transformations. Across three representative model families -- BERT, Qwen2, and LLaMA-like models -- all models attain Acc on the base split and show no degradation under redundant rule deletion. In contrast, essential rule deletion yields a pronounced decrease to near-chance performance, and injecting explicit contradictions reduces accuracy to 0.0000. Under logic-preserving rewrites, accuracy is largely preserved for single-law transformations with only small degradations in a few cases, whereas multi-law stacking exposes model-dependent sensitivity: BERT matches the base condition, TinyLlama shows only marginal degradation, and Qwen2 exhibits a substantial drop. Overall, the results indicate that contemporary LLMs are generally stable under semantic-preserving reformulations, yet remain brittle to missing or inconsistent evidence and may degrade under composed logical transformations depending on the model family. The proposed framework provides a concise diagnostic tool for isolating these failure modes and for evaluating logical generalisation beyond surface-form variation.