Seeing Through the Rain: Resolving High-Frequency Conflicts in Deraining and Super-Resolution via Diffusion Guidance
Authors
Wenjie Li, Jinglei Shi, Jin Han, Heng Guo, Zhanyu Ma
Abstract
Clean images are crucial for visual tasks such as small object detection, especially at high resolutions. However, real-world images are often degraded by adverse weather, and weather restoration methods may sacrifice high-frequency details critical for analyzing small objects. A natural solution is to apply super-resolution (SR) after weather removal to recover both clarity and fine structures. However, simply cascading restoration and SR struggle to bridge their inherent conflict: removal aims to remove high-frequency weather-induced noise, while SR aims to hallucinate high-frequency textures from existing details, leading to inconsistent restoration contents. In this paper, we take deraining as a case study and propose DHGM, a Diffusion-based High-frequency Guided Model for generating clean and high-resolution images. DHGM integrates pre-trained diffusion priors with high-pass filters to simultaneously remove rain artifacts and enhance structural details. Extensive experiments demonstrate that DHGM achieves superior performance over existing methods, with lower costs.