Table of Contents
Fetching ...
Paper

Analysing Knowledge Construction in Online Learning: Adapting the Interaction Analysis Model for Unstructured Large-Scale Discourse

Abstract

The rapid expansion of online courses and social media has generated large volumes of unstructured learner-generated text. Understanding how learners construct knowledge in these spaces is crucial for analysing learning processes, informing content design, and providing feedback at scale. However, existing approaches typically rely on manual coding of well-structured discussion forums, which does not scale to the fragmented discourse found in online learning. This study proposes and validates a framework that combines a codebook inspired by the Interaction Analysis Model with an automated classifier to enable large-scale analysis of knowledge construction in unstructured online discourse. We adapt four comment-level categories of knowledge construction: Non-Knowledge Construction, Share, Explore, and Integrate. Three trained annotators coded a balanced sample of 20,000 comments from YouTube education channels. The codebook demonstrated strong reliability, with Cohen's kappa = 0.79 on the main dataset and 0.85--0.93 across four additional educational domains. For automated classification, bag-of-words baselines were compared with transformer-based language models using 10-fold cross-validation. A DeBERTa-v3-large model achieved the highest macro-averaged F1 score (0.841), outperforming all baselines and other transformer models. External validation on four domains yielded macro-F1 above 0.705, with stronger transfer in medicine and programming, where discourse was more structured and task-focused, and weaker transfer in language and music, where comments were more varied and context-dependent. Overall, the study shows that theory-driven, semi-automated analysis of knowledge construction at scale is feasible, enabling the integration of knowledge-construction indicators into learning analytics and the design of online learning environments.