On preconditioned Riemannian gradient methods for minimizing the Gross-Pitaevskii energy functional: algorithms, global convergence and optimal local convergence rate
Authors
Zixu Feng, Qinglin Tang
Abstract
In this article, we propose a unified framework for preconditioned Riemannian gradient (P-RG) methods to minimize Gross-Pitaevskii (GP) energy functionals with rotation on a Riemannian manifold. This framework enables comprehensive analysis of existing projected Sobolev gradient methods and facilitates the construction of highly efficient P-RG algorithms. Under mild assumptions on the preconditioner, we prove energy dissipation and global convergence. Local convergence is more challenging due to phase and rotational invariances. Assuming the GP functional is Morse-Bott, we derive a sharp Polyak-Łojasiewicz (PL) inequality near minimizers. This allows precise characterization of the local convergence rate via the condition number , where and are the lower and upper bounds of the spectrum of a combined operator (preconditioner and Hessian) on a closed subspace. By combining spectral analysis with the PL inequality, we identify an optimal preconditioner achieving the best possible local convergence rate: ( small). To our knowledge, this is the first rigorous derivation of the local convergence rate for P-RG methods applied to GP functionals with two symmetry structures. Numerical experiments on rapidly rotating Bose-Einstein condensates validate the theoretical results and compare the performance of different preconditioners.