Visual language models (VLMs) have the potential to transform medical workflows. However, the deployment is limited by sycophancy. Despite this serious threat to patient safety, a systematic benchmark remains lacking. This paper addresses this gap by introducing a Medical benchmark that applies multiple templates to VLMs in a hierarchical medical visual question answering task. We find that current VLMs are highly susceptible to visual cues, with failure rates showing a correlation to model size or overall accuracy. we discover that perceived authority and user mimicry are powerful triggers, suggesting a bias mechanism independent of visual data. To overcome this, we propose a Visual Information Purification for Evidence based Responses (VIPER) strategy that proactively filters out non-evidence-based social cues, thereby reinforcing evidence based reasoning. VIPER reduces sycophancy while maintaining interpretability and consistently outperforms baseline methods, laying the necessary foundation for the robust and secure integration of VLMs.