Selecting a solution algorithm for the Facility Layout Problem (FLP), an NP-hard optimization problem with multiobjective trade-off, is a complex task that requires deep expert knowledge. The performance of a given algorithm depends on the specific characteristics of the problem, such as the number of facilities, objectives, and constraints. This creates a need for a data-driven recommendation method to guide algorithm selection in automated design systems. This paper introduces a new recommendation method to make this expertise accessible, based on a Knowledge Graph-Based Retrieval-Augmented Generation (KG-RAG) framework. In this framework, a domain-specific knowledge graph (KG) is constructed from the literature. The method then employs a multifaceted retrieval mechanism to gather relevant evidence from this KG using three distinct approaches: precise graph-based search, flexible vector-based search, and cluster-based high-level search. The retrieved evidence is utilized by a Large Language Model (LLM) to generate algorithm recommendations based on data-driven reasoning. This KG-RAG framework is tested on a use case consisting of six problems comprising of complex multi-objective and multi-constraint FLP case. The results are compared with the Gemini 1.5 Flash chatbot. The results show that KG-RAG achieves an average reasoning score of 4.7 out of 5 compared to 3.3 for the baseline chatbot.