RECAP: REwriting Conversations for Intent Understanding in Agentic Planning
Authors
Kushan Mitra, Dan Zhang, Hannah Kim, Estevam Hruschka
Abstract
Understanding user intent is essential for effective planning in conversational assistants, particularly those powered by large language models (LLMs) coordinating multiple agents. However, real-world dialogues are often ambiguous, underspecified, or dynamic, making intent detection a persistent challenge. Traditional classification-based approaches struggle to generalize in open-ended settings, leading to brittle interpretations and poor downstream planning. We propose RECAP (REwriting Conversations for Agent Planning), a new benchmark designed to evaluate and advance intent rewriting, reframing user-agent dialogues into concise representations of user goals. RECAP captures diverse challenges such as ambiguity, intent drift, vagueness, and mixed-goal conversations. Alongside the dataset, we introduce an LLM-based evaluator that assesses planning utility given the rewritten intent. Using RECAP, we develop a prompt-based rewriting approach that outperforms baselines, in terms of plan preference. We further demonstrate that fine-tuning two DPO-based rewriters yields additional utility gains. Our results highlight intent rewriting as a critical and tractable component for improving agentic planning in open-domain dialogue systems.