CAPE: A CLIP-Aware Pointing Ensemble of Complementary Heatmap Cues for Embodied Reference Understanding
Authors
Fevziye Irem Eyiokur, Dogucan Yaman, Hazım Kemal Ekenel, Alexander Waibel
Abstract
We address Embodied Reference Understanding, the task of predicting the object a person in the scene refers to through pointing gesture and language. This requires multimodal reasoning over text, visual pointing cues, and scene context, yet existing methods often fail to fully exploit visual disambiguation signals. We also observe that while the referent often aligns with the head-to-fingertip direction, in many cases it aligns more closely with the wrist-to-fingertip direction, making a single-line assumption overly limiting. To address this, we propose a dual-model framework, where one model learns from the head-to-fingertip direction and the other from the wrist-to-fingertip direction. We introduce a Gaussian ray heatmap representation of these lines and use them as input to provide a strong supervisory signal that encourages the model to better attend to pointing cues. To fuse their complementary strengths, we present the CLIP-Aware Pointing Ensemble module, which performs a hybrid ensemble guided by CLIP features. We further incorporate an auxiliary object center prediction head to enhance referent localization. We validate our approach on YouRefIt, achieving 75.0 mAP at 0.25 IoU, alongside state-of-the-art CLIP and C_D scores, and demonstrate its generality on unseen CAESAR and ISL Pointing, showing robust performance across benchmarks.