Table of Contents
Fetching ...
Paper

Agents of Change: Self-Evolving LLM Agents for Strategic Planning

Abstract

We address the long-horizon gap in large language model (LLM) agents by enabling them to sustain coherent strategies in adversarial, stochastic environments. Settlers of Catan provides a challenging benchmark: success depends on balancing short- and long-term goals amid randomness, trading, expansion, and blocking. Prompt-centric LLM agents (e.g., ReAct, Reflexion) must re-interpret large, evolving game states each turn, quickly saturating context windows and losing strategic consistency. We propose HexMachina, a continual learning multi-agent system that separates environment discovery (inducing an adapter layer without documentation) from strategy improvement (evolving a compiled player through code refinement and simulation). This design preserves executable artifacts, allowing the LLM to focus on high-level strategy rather than per-turn reasoning. In controlled Catanatron experiments, HexMachina learns from scratch and evolves players that outperform the strongest human-crafted baseline (AlphaBeta), achieving a 54% win rate and surpassing prompt-driven and no-discovery baselines. Ablations confirm that isolating pure strategy learning improves performance. Overall, artifact-centric continual learning transforms LLMs from brittle stepwise deciders into stable strategy designers, advancing long-horizon autonomy.