Table of Contents
Fetching ...
Paper

High-Precision Measurement of Time Delay with Frequency-Resolved Hong-Ou-Mandel Interference of Weak Coherent States

Abstract

We demonstrate a scheme for high-precision measurements of time delay based on frequency-resolved Hong-Ou-Mandel (HOM) interference. Our approach is applied to weak coherent states and exploits an array of single-photon avalanche diodes (SPADs). Unlike conventional HOM experiments, our setup enables high-precision measurements producing an uncertainty per coincidence of about ps even for photons separated by delays up to ps so much greater than their coherence time where ordinary non-resolved HOM fails. This result confirms our newly developed theoretical predictions that consider, differently from previous theoretical results, a finite frequency resolution in the detection. We compare the performance of this scheme against the conventional non-resolved case. Experimental data align well with the predictions of quantum estimation theory, demonstrating a significant reduction in the uncertainty. Due to the physics of the frequency-resolved HOM effect, the gain in precision is particularly high when the estimated time delay is much longer than the coherence time.