Existing evaluations of multimodal large language models (MLLMs) on spatial intelligence are typically fragmented and limited in scope. In this work, we aim to conduct a holistic assessment of the spatial understanding capabilities of modern MLLMs and propose complementary data-driven and agent-based solutions. Specifically, we make the following contributions: (i) we introduce SpatialScore, to our knowledge, the most comprehensive and diverse benchmark for multimodal spatial intelligence to date. It covers multiple visual data types, input modalities, and question-answering formats, and contains approximately 5K manually verified samples spanning 30 distinct tasks; (ii) using SpatialScore, we extensively evaluate 40 representative MLLMs, revealing persistent challenges and a substantial gap between current models and human-level spatial intelligence; (iii) to advance model capabilities, we construct SpatialCorpus, a large-scale training resource with 331K multimodal QA samples that supports fine-tuning on spatial reasoning tasks and significantly improves the performance of existing models (e.g., Qwen3-VL); (iv) to complement this data-driven route with a training-free paradigm, we develop SpatialAgent, a multi-agent system equipped with 12 specialized spatial perception tools that supports both Plan-Execute and ReAct reasoning, enabling substantial gains in spatial reasoning without additional model training. Extensive experiments and in-depth analyses demonstrate the effectiveness of our benchmark, corpus, and agent framework. We expect these resources to serve as a solid foundation for advancing MLLMs toward human-level spatial intelligence. All data, code, and models will be released to the research community.