Table of Contents
Fetching ...
Paper

SpatialScore: Towards Comprehensive Evaluation for Spatial Intelligence

Abstract

Existing evaluations of multimodal large language models (MLLMs) on spatial intelligence are typically fragmented and limited in scope. In this work, we aim to conduct a holistic assessment of the spatial understanding capabilities of modern MLLMs and propose complementary data-driven and agent-based solutions. Specifically, we make the following contributions: (i) we introduce SpatialScore, to our knowledge, the most comprehensive and diverse benchmark for multimodal spatial intelligence to date. It covers multiple visual data types, input modalities, and question-answering formats, and contains approximately 5K manually verified samples spanning 30 distinct tasks; (ii) using SpatialScore, we extensively evaluate 40 representative MLLMs, revealing persistent challenges and a substantial gap between current models and human-level spatial intelligence; (iii) to advance model capabilities, we construct SpatialCorpus, a large-scale training resource with 331K multimodal QA samples that supports fine-tuning on spatial reasoning tasks and significantly improves the performance of existing models (e.g., Qwen3-VL); (iv) to complement this data-driven route with a training-free paradigm, we develop SpatialAgent, a multi-agent system equipped with 12 specialized spatial perception tools that supports both Plan-Execute and ReAct reasoning, enabling substantial gains in spatial reasoning without additional model training. Extensive experiments and in-depth analyses demonstrate the effectiveness of our benchmark, corpus, and agent framework. We expect these resources to serve as a solid foundation for advancing MLLMs toward human-level spatial intelligence. All data, code, and models will be released to the research community.