FOL-Traces: Verified First-Order Logic Reasoning Traces at Scale
Authors
Isabelle Lee, Sarah Liaw, Dani Yogatama
Abstract
Reasoning in language models is difficult to evaluate: natural-language traces are unverifiable, symbolic datasets too small, and most benchmarks conflate heuristics with inference. We present FOL-Traces, the first large-scale dataset of programmatically verified reasoning traces, enabling rigorous evaluation of structured logical inference. We also propose two challenging and comprehensive diagnostic tasks-masked operation prediction and step completion-that directly probe syntactic awareness and process fidelity. FOL-Traces serves as a scalable testbed for rigorously studying how models perform structured logical inference. Systematic experiments with 5 reasoning LLMs show that the dataset remains challenging: models only reach around 45.7% accuracy on masked operation prediction and around 27% on two-step completion.