Table of Contents
Fetching ...
Paper

SCAN: Semantic Document Layout Analysis for Textual and Visual Retrieval-Augmented Generation

Abstract

With the increasing adoption of Large Language Models (LLMs) and Vision-Language Models (VLMs), rich document analysis technologies for applications like Retrieval-Augmented Generation (RAG) and visual RAG are gaining significant attention. Recent research indicates that using VLMs yields better RAG performance, but processing rich documents remains a challenge since a single page contains large amounts of information. In this paper, we present SCAN (SemantiC Document Layout ANalysis), a novel approach that enhances both textual and visual Retrieval-Augmented Generation (RAG) systems that work with visually rich documents. It is a VLM-friendly approach that identifies document components with appropriate semantic granularity, balancing context preservation with processing efficiency. SCAN uses a coarse-grained semantic approach that divides documents into coherent regions covering contiguous components. We trained the SCAN model by fine-tuning object detection models on an annotated dataset. Our experimental results across English and Japanese datasets demonstrate that applying SCAN improves end-to-end textual RAG performance by up to 9.4 points and visual RAG performance by up to 10.4 points, outperforming conventional approaches and even commercial document processing solutions.