Cross-correlation scheme for quantum optical coherence tomography based on Michelson interferometer
Authors
Anna Romanova, Vadim Rodimin, Konstantin Katamadze
Abstract
Quantum optical coherence tomography (QOCT) offers a simple way to cancel dispersion broadening in a sample while also providing twice the resolution compared to classical OCT. However, to achieve these advantages, a bright and broadband source of entangled photon pairs is required. A simple implementation uses collinear spontaneous parametric down-conversion in a Michelson interferometer (MI), yet this autocorrelation scheme suffers from parasitic terms and sensitivity to phase noise. Here, we introduce a cross-correlation MI-based QOCT that overcomes these drawbacks, significantly advancing QOCT toward practical applications.