Flow-GRPO: Training Flow Matching Models via Online RL
Authors
Jie Liu, Gongye Liu, Jiajun Liang, Yangguang Li, Jiaheng Liu, Xintao Wang, Pengfei Wan, Di Zhang, Wanli Ouyang
Abstract
We propose Flow-GRPO, the first method to integrate online policy gradient reinforcement learning (RL) into flow matching models. Our approach uses two key strategies: (1) an ODE-to-SDE conversion that transforms a deterministic Ordinary Differential Equation (ODE) into an equivalent Stochastic Differential Equation (SDE) that matches the original model's marginal distribution at all timesteps, enabling statistical sampling for RL exploration; and (2) a Denoising Reduction strategy that reduces training denoising steps while retaining the original number of inference steps, significantly improving sampling efficiency without sacrificing performance. Empirically, Flow-GRPO is effective across multiple text-to-image tasks. For compositional generation, RL-tuned SD3.5-M generates nearly perfect object counts, spatial relations, and fine-grained attributes, increasing GenEval accuracy from to . In visual text rendering, accuracy improves from to , greatly enhancing text generation. Flow-GRPO also achieves substantial gains in human preference alignment. Notably, very little reward hacking occurred, meaning rewards did not increase at the cost of appreciable image quality or diversity degradation.