Towards Efficient Real-Time Video Motion Transfer via Generative Time Series Modeling
Authors
Tasmiah Haque, Md. Asif Bin Syed, Byungheon Jeong, Xue Bai, Sumit Mohan, Somdyuti Paul, Imtiaz Ahmed, Srinjoy Das
Abstract
Motion Transfer is a technique that synthesizes videos by transferring motion dynamics from a driving video to a source image. In this work we propose a deep learning-based framework to enable real-time video motion transfer which is critical for enabling bandwidth-efficient applications such as video conferencing, remote health monitoring, virtual reality interaction, and vision-based anomaly detection. This is done using keypoints which serve as semantically meaningful, compact representations of motion across time. To enable bandwidth savings during video transmission we perform forecasting of keypoints using two generative time series models VRNN and GRU-NF. The predicted keypoints are transformed into realistic video frames using an optical flow-based module paired with a generator network, thereby enabling efficient, low-frame-rate video transmission. Based on the application this allows the framework to either generate a deterministic future sequence or sample a diverse set of plausible futures. Experimental results demonstrate that VRNN achieves the best point-forecast fidelity (lowest MAE) in applications requiring stable and accurate multi-step forecasting and is particularly competitive in higher-uncertainty, multi-modal settings. This is achieved by introducing recurrently conditioned stochastic latent variables that carry past contexts to capture uncertainty and temporal variation. On the other hand the GRU-NF model enables richer diversity of generated videos while maintaining high visual quality. This is realized by learning an invertible, exact-likelihood mapping between the keypoints and their latent representations which supports rich and controllable sampling of diverse yet coherent keypoint sequences. Our work lays the foundation for next-generation AI systems that require real-time, bandwidth-efficient, and semantically controllable video generation.