Semantic-Anchored, Class Variance-Optimized Clustering for Robust Semi-Supervised Few-Shot Learning
Authors
Souvik Maji, Rhythm Baghel, Pratik Mazumder
Abstract
Few-shot learning has been extensively explored to address problems where the amount of labeled samples is very limited for some classes. In the semi-supervised few-shot learning setting, substantial quantities of unlabeled samples are available. Such unlabeled samples are generally cheaper to obtain and can be used to improve the few-shot learning performance of the model. Some of the recent methods for this setting rely on clustering to generate pseudo-labels for the unlabeled samples. Since the effectiveness of clustering heavily influences the labeling of the unlabeled samples, it can significantly affect the few-shot learning performance. In this paper, we focus on improving the representation learned by the model in order to improve the clustering and, consequently, the model performance. We propose an approach for semi-supervised few-shot learning that performs a class-variance optimized clustering coupled with a cluster separation tuner in order to improve the effectiveness of clustering the labeled and unlabeled samples in this setting. It also optimizes the clustering-based pseudo-labeling process using a restricted pseudo-labeling approach and performs semantic information injection in order to improve the semi-supervised few-shot learning performance of the model. We experimentally demonstrate that our proposed approach significantly outperforms recent state-of-the-art methods on the benchmark datasets. To further establish its robustness, we conduct extensive experiments under challenging conditions, showing that the model generalizes well to domain shifts and achieves new state-of-the-art performance in open-set settings with distractor classes, highlighting its effectiveness for real-world applications.