Table of Contents
Fetching ...
Paper

A Generation Framework with Strict Constraints for Crystal Materials Design

Abstract

The design of crystal materials plays a critical role in areas such as new energy development, biomedical engineering, and semiconductors. Recent advances in data-driven methods have enabled the generation of diverse crystal structures. However, most existing approaches still rely on random sampling without strict constraints, requiring multiple post-processing steps to identify stable candidates with the desired physical and chemical properties. In this work, we present a new constrained generation framework that takes multiple constraints as input and enables the generation of crystal structures with specific chemical and properties. In this framework, intermediate constraints, such as symmetry information and composition ratio, are generated by a constraint generator based on large language models (LLMs), which considers the target properties. These constraints are then used by a subsequent crystal structure generator to ensure that the structure generation process is under control. Our method generates crystal structures with a probability of meeting the target properties that is more than twice that of existing approaches. Furthermore, nearly 100% of the generated crystals strictly adhere to predefined chemical composition, eliminating the risks of supply chain during production.