DiM: Diffusion Mamba for Efficient High-Resolution Image Synthesis
Authors
Yao Teng, Yue Wu, Han Shi, Xuefei Ning, Guohao Dai, Yu Wang, Zhenguo Li, Xihui Liu
Abstract
Diffusion models have achieved great success in image generation, with the backbone evolving from U-Net to Vision Transformers. However, the computational cost of Transformers is quadratic to the number of tokens, leading to significant challenges when dealing with high-resolution images. In this work, we propose Diffusion Mamba (DiM), which combines the efficiency of Mamba, a sequence model based on State Space Models (SSM), with the expressive power of diffusion models for efficient high-resolution image synthesis. To address the challenge that Mamba cannot generalize to 2D signals, we make several architecture designs including multi-directional scans, learnable padding tokens at the end of each row and column, and lightweight local feature enhancement. Our DiM architecture achieves inference-time efficiency for high-resolution images. In addition, to further improve training efficiency for high-resolution image generation with DiM, we investigate "weak-to-strong" training strategy that pretrains DiM on low-resolution images () and then finetune it on high-resolution images (). We further explore training-free upsampling strategies to enable the model to generate higher-resolution images (e.g., and ) without further fine-tuning. Experiments demonstrate the effectiveness and efficiency of our DiM. The code of our work is available here: {\url{https://github.com/tyshiwo1/DiM-DiffusionMamba/}}.