Fast Wrong-way Cycling Detection in CCTV Videos: Sparse Sampling is All You Need
Authors
Jing Xu, Wentao Shi, Sheng Ren, Lijuan Zhang, Weikai Yang, Pan Gao, Jie Qin
Abstract
Effective monitoring of unusual transportation behaviors, such as wrong-way cycling (i.e., riding a bicycle or e-bike against designated traffic flow), is crucial for optimizing law enforcement deployment and traffic planning. However, accurately recording all wrong-way cycling events is both unnecessary and infeasible in resource-constrained environments, as it requires high-resolution cameras for evidence collection and event detection. To address this challenge, we propose WWC-Predictor, a novel method for efficiently estimating the wrong-way cycling ratio, defined as the proportion of wrong-way cycling events relative to the total number of cycling movements over a given time period. The core innovation of our method lies in accurately detecting wrong-way cycling events in sparsely sampled frames using a light-weight detector, then estimating the overall ratio using an autoregressive moving average model. To evaluate the effectiveness of our method, we construct a benchmark dataset consisting of 35 minutes of video sequences with minute-level annotations.Our method achieves an average error rate of a mere 1.475\% while consuming only 19.12\% GPU time required by conventional tracking methods, validating its effectiveness in estimating the wrong-way cycling ratio. Our source code is publicly available at: https://github.com/VICA-Lab-HKUST-GZ/WWC-Predictor.