Beyond Chain-of-Thought, Effective Graph-of-Thought Reasoning in Language Models
Authors
Yao Yao, Zuchao Li, Hai Zhao
Abstract
With the widespread use of language models (LMs) in NLP tasks, researchers have discovered the potential of Chain-of-thought (CoT) to assist LMs in accomplishing complex reasoning tasks by generating intermediate steps. However, human thought processes are often non-linear, rather than simply sequential chains of thoughts. Therefore, we propose Graph-of-Thought (GoT) reasoning, which models human thought processes not only as a chain but also as a graph. By representing thought units as nodes and connections between them as edges, our approach captures the non-sequential nature of human thinking and allows for a more realistic modeling of thought processes. GoT adopts a two-stage framework with an additional GoT encoder for thought graph representation and fuses the graph representation with the original input representation through a gated fusion mechanism. We evaluate GoT's performance on a text-only reasoning task (AQUA-RAT) and a multimodal reasoning task (ScienceQA). Our model achieves significant improvement over the strong CoT baseline on the AQUA-RAT test set and boosts accuracy from 85.19% to 87.59% using the T5-base model over the state-of-the-art Multimodal-CoT on the ScienceQA test set.