We summarize different approaches to the theory of quantum graphs and provide several ways to construct concrete examples. First, we classify all undirected quantum graphs on the quantum space . Secondly, we apply the theory of 2-cocycle deformations to Cayley graphs of abelian groups. This defines a twisting procedure that produces a quantum graph, which is quantum isomorphic to the original one. For instance, we define the anticommutative hypercube graphs. Thirdly, we construct an example of a quantum graph, which is not quantum isomorphic to any classical graph.